Jumat, 09 Januari 2015

Cara Mencari Suku Ke-n dari Barisan Aritmatika

  Tidak ada komentar
Pada postingan sebelumnya Mafia Online sudah membahas tentang perbendaan barisan dan deret bilangan. Juga sudah disinggung tentang cara menghitung barisan dan deret aritmatika. Nah pada postingan ini Mafia Online akan membahas tentang cara mencari suku ke-n dari barisan aritmatika. Cara mencari suku ke-n dari barisan aritmatika ini perlu anda pahami secara konsep karena materi ini akan anda jumpai lagi pada tingkat SMA/MA.

Dalam barisan aritmatika kita akan mengenal tingkatan-tingkatan barisan aritmatika. Mulai dari barisan aritmatika tingkat kesatu, tingkat kedua, tingkat ketiga, dan seterusnya. Dalam hal ini Mafia Online hanya membahas sampai barisan aritmatika tingkat ketiga. Rumus secara umum suku ke-n dari barisan artimatika:
Tingkat 1 => Un = an + b
Tingkat 2 => Un = an2 + bn + c
Tingkat 3 => Un = an3 + bn2+ cn + d

Barisan Aritmatika Tingkat Kesatu
Contoh barisan aritmatika tingkat kesatu yakni sebagai berikut.
a. 2, 4, 6, 8, 10, . . .
b. 3, 6, 9, 12, 15, . . .

Kenapa disebut sebagai barisan aritmatika tingkat kesatu? Karena selisih dua suku yang berdekatan memiliki nilai sama berada pada tingkat pertama. Perhatikan gambar di bawah ini.
Image

Untuk mencari rumus ke-n dari barisan aritmatika tingkat kesatu, silahkan perhatikan uraian berikut ini. Kita ketahui bahwa rumus umum untuk mencari suku ke-n dari barisan aritmatika tingkat kesatu yakni:
Un = an + b
maka:
U1 = a + b
U2 = 2a + b
U3 = 3a + b
U4 = 4a + b
Jika kita buat dalam barisan aritmatika maka akan tampak seperti berikut.
Image

Dari gambar di atas terlihat bahwa selisih antara U2 dengan U1, U3 dengan U2, dan U4 dengan U3 adalah a.


Contoh Soal 1
Tentukan rumus suku ke-n dari barisan aritmatika 6, 9, 12, 15, 18, . . .

Penyelesaian:

Image

Dari gambar di atas maka:
a = 3

a + b = 6
3 + b = 6
b = 3

Un = an + b
Un = 3n + 3

Jadi, rumus suku ke-n dari barisan aritmatika 6, 9, 12, 15, 18, . . . adalah Un = 3n + 3

Barisan Aritmatika Tingkat Kedua
Contoh barisan aritmatika tingkat kedua sebagai berikut.
a. 1, 3, 7, 13, 21, . . .
b. 5, 6, 10, 17, 27, . . .
c. 4, 6, 13, 25, 42, . . .
Selisih dua suku yang berdekatan yang bernilai sama berada pada tingkatan yang kedua. Perhatikan gambar di bawah ini.
Image
Untuk mencari suku ke-n dari barisan aritmatika tingkat 2, silahkan perhatikan uraian berikut ini.
Un = an2 + bn + c 
U1 = a(1)2 + b(1) + c = a + b + c
U2 = a(2)2 + b(2) + c = 4a + 2b + c
U3 = a(3)2 + b(3) + c = 9a + 3b + c
U4 = a(4)2 + b(4) + c = 16a + 4b + c

Jika dibuat dalam bentuk barisan maka akan tampak seperti berikut.
Image
Dengan menggunakan barisan bertingkat maka barisan aritmatika 1, 3, 7, 13, 21, . . . akan diperoleh seperti berikut
Image
Maka:
a + b + c = 1
3a + b = 2
2a = 2
Dengan metode substitusi maka diperoleh:
a = 1, b = – 1  dan c = 1 maka
Un = an2 + bn + c
Un = 1n2 + (– 1)n + 1
Un = n2 – n + 1

Jadi rumus untuk menentukan nilai a, b, dan c pada barisan aritmatika tingkat 2 yakni:
a + b + c = U1
3a + b = Ut1
2a = Ut2

Contoh Soal 2
Tentukan rumus suku ke-n dari barisan aritmatika 4, 6, 13, 25, 42, . . .

Penyelsaian:
Image
2a = 5
a = 5/2

3a + b = 2
3(5/2) + b = 2
15/2 + b = 2
b = 4/2 – 15/2
b = – 11/2

a + b + c = 4
5/2 – 11/2 + c = 8/2
c = 8/2 – 5/2 + 11/2
c = 14/2

Un = an2 + bn + c
Un = (5/2)n2 – (11/2)n + 14/2
Un = ½ (5n2 – 11n + 14)

Barisan Aritmatika Tingkat Ketiga
Contoh barisan aritmatika tingkat 3 sebagai berikut.
a. 1, 3, 7, 15, 29, . . .
b. 1, 2, 4, 10, 23, . . .
Selisih dua suku yang berdekatan memiliki nilai sama berada pada tingkatan yang ketiga. Perhatikan gambar di bawah ini.
Image
Dengan cara yang sama seperti cara mencari rumus suku ke-n aritmatika tingkat kedua, maka akan diperoleh rumus untuk mencari a, b, c dan d yakni:
a + b + c + d = U1
7a + 3b + c = Ut1
12a + 2b = Ut2
6a = Ut3

Contoh Soal 3
Tentukan rumus suku ke-n dari barisan aritmatika 1, 3, 7, 15, 29, . . .

Penyelesaian:
Image
6a = 2
a = 1/3

12a + 2b = 2
4 + b = 2
b = – 2

7a + 3b + c = 2
7/3 – 6 + c = 2
c = 6/3 + 18/3 – 7/3
c = 17/3

a + b + c + d = 1
1/3 – 2 + 17/3 + d = 1
d = 3/3 – 1/3 + 6/3 – 17/3
d = – 9/3 = – 3

Un = (1/3)n3 – 2n2 + (17/3)n – 3
Un = (1/3)(n3 – 6n2 + 17n – 9)

Nah demikian postingan Mafia Online tentang cara mencari suku ke-n dari barisan aritmatika. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan ini. Salam Mafia => Kita pasti bisa.

Tidak ada komentar :

Posting Komentar